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Abstract

The shaping of RL.C lines for delay reduction is inves-
tigated. It is shown that inductance can act to diminish
dispersion, to the extent of reducing delay to its theoretical
time-of-flight minimum even in the presence of substan-
tial loss in the line. Simulations predict significant delay
improvement (25%-38%) for long MCM lines propagating
high-speed signals.

1 Introduction

It has been demonstrated that delay reduction is possi-
ble by shaping wires modelled as RC segments [CLZ93].
Recently, the stronger result that the exponential taper is
optimal for minimizing Elmore delay in distributed RC
lines has been proved [FS94]. In this paper, the effect of
shaping on the delay of wires with distributed inductance,
in addition to resistance and capacitance, is investigated.

The inclusion of inductance is motivated by the well-
known fact that inductive effects become significant for
long MCM interconnect propagating high-speed signals.
Qualitatively, the distributed RLC case differs from the RC
case in that the inductance makes peaking and oscillations
possible, and models time-of-flight delays that can be sig-
nificant at high speeds. The advantage of peaking is that it
can lead to smaller rise/fall times; the disadvantage is that
it may result in undesirable oscillations. It is shown in this
work that it is possible to retain the advantages while di-
minishing or eliminating the disadvantages. Use is made of
the loss (resistance) of the line. The desirable effects of loss
(that it kills reflections and oscillations) are used to advan-
tage, while the undesirable ones (that it slows rising/falling
edges, an effect known as dispersion’) are alleviated by
heightening the initial peaking response through tapering.
Experimental simulations suggest that the technique can be
useful for long MCM interconnections operating at high
speeds.

The elegant result that the exponential taper is opti-
mal for the RC case was demonstrated [FS94] by solving
the Euler-Lagrange equations of the calculus of variations,
minimizing the Elmore delay over all possible shapes of
the distributed line. It is shown in Section 2 that the El-
more delay (first moment) is not altered by the inclusion
of inductance. Thus the results of [FS94] carry over to
the distributed RLC case. Unfortunately, the first mo-
ment is not a good measure of delay for the RLC case,

! Also called diffusion delay or just distortion (not to be confused with harmonic
distortion).
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unlike for the RC case in which it is known to provide a
good empirical metric. A new measure, effective for resis-
tively terminated RLC lines, is defined in Section 3. Using
this measure, a quantitative understanding of the delay im-
provement possible by shaping is obtained for the case of
resistive termination. The surprising fact that it is possible
to entirely eliminate loss-induced delay leaving only the
“lossless” or time-of-flight delay, is demonstrated for the
resistive termination case. This case also suggests a bound
on the delay improvement possible for the more useful case
of capacitive termination, for which theoretical results are
not available yet. In Section 4, simulations are presented
that demonstrate delay improvements for capacitive termi-
nations.
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Figure 1: Tapered line

2 First Moment is Independent of Inductance

Consider the arbitrarily tapered line shown in Fig. 1.
Let w(x) represent the width of the line at point x along its
length, and let [ be its total length.

Let R(x), L(x) and C(x) denote the resistance, induc-
tance and capacitance at the point x. These are related to
the width of the line at x. Assuming that the transverse di-
mensions of the line are small compared to the length, and
neglecting fringing capacitance, the following expressions
hold [GK68]:

R(x) = @% L(x) = %

Consider the circuit shown in Fig. 2, with Z; set be be
a capacitance, 7(’7 Denoting by V = V(x, s) the Laplace

transform of the voltage at the point x, it can be shown
[GK68] that the following differential equation holds:

Cx) = Cow(x) M
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The boundary conditions imposed by the circuit are:
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Figure 2: Circuit for delay calculation
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Consider the transfer function H(x,s) = K(-E%l Divid-
ing Equation 2 by E(s):
2 H ow
OH | OHB sC(0) [sL(0) + R(0)| H= 0 (5)
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Since the quantity of interest is the first moment of the
transfer function, H'(x,s) = %%, Equation 5 is differenti-
ated with respect to s:

%27'5’“’“ 18 _‘3;:{ ~H'sC(0) [sL(0)+R(0)]~ HC(0) [R(0)+2sL(0)]=0 (6)

Evaluating at s = 0,
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H(s)|,_, is the transfer function at DC, which is unity
because the load is capacitive; hence (denoting H'|_, by
H}):

FHy | 0Hy %
a5t + 5 = RO)C(0) (8)

Similarly, by dividing the boundary conditions (Equations
3 and 4) by E(s), differentiating w.r.t s, and evaluating at
s = 0, the following boundary conditions for Equation 8
are obtained:

—R(0) ., OH!
ZE )HO(O) - axo —0 ©)
, _ w(l) 0H)

Hy(DRO)CL = 755 5 _ (10)

Note that the inductance L does not appear anywhere in
Equation 8 or its boundary conditions Equations 9 and 10.
Since these three equations together specify Hj(x) uniquely
in the interval 0 < x < [, it is clear that H}(x) in general
and Hj(!) in particular do not depend on the inductance in
the line. This first moment is the same as in a line without
inductance modelled, i.e., a distributed RC line, therefore
the results in [FS94] apply equally to the optimization of
the first moment of the distributed RLC line.
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Figure 3: RCvs. RLC

The fact that the first moment of the transmitted wave-
form is not altered by the inductance of the line does not
imply that the two waveforms are the same. Fig. 3 displays
the difference that results from neglecting the inductance
of a tapered distributed line with an 8:1 taper between
the sending and receiving end. The RC model neglects
the time-of-flight delay of the line, and overestimates the
90% rise point by about 50%. This indicates that the first
moment or Elmore delay, which has proven to be a good
estimate of delay for RC lines, is not so for RLC lines.

3 Avoiding Dispersion by Tapering

It is shown in this section that the inductance of a dis-
tributed line can reduce propagation delay to its theoretical
minimum (the time-of-flight delay) even in the presence
of distributed resistance and capacitance. This surprising
result is derived by considering an exponentially tapered
line terminated by a resistive load. A criterion that mea-
sures the transmission fidelity of fast edges is obtained by
finding the impulsive component of the impulse response
of the resistively terminated line. The use of this criterion
is demonstrated using a simple example.

3.1 Impulsive Component of Impulse Response

Consider a distributed RLC line with an exponential
shape, i.e.,

w(x) = wpe*, 0<x<l (an

where c is the taper factor of the line and [ its total length.
Equations 1 imply that the products RC and LC are inde-
pendent of x, therefore can be denoted by the following
constants:

d=R(x)C(x), k¥ = L(x)C(x) (12)



It can be shown [GK68] that the Laplace-domain equa-
tions relating the terminal voltages V;(s), Vz(s) and cur-
rents [;(s), I>(s) of the exponentially tapered transmission
line are:

e?! [Vz (7 - %) — (sL(I) + R(1)) 12]

=e [V (v~ %) +(LO)+RO) L] (%)

e 5! [V] (7 + %) — (sL(0) + R(0)) 1,]

=e Vs (v + g) + (L) +ROYL] (4

where 7 is defined as:

v(s) = 1/ s%K? + sd + %2—

To analyze transmission delay, Equations 13 and 14 are
applied to the circuit in Fig. 2. The following expression
is obtained for the output voltage in terms of the input:

15)
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By dividing the numerator and denominator of Equation
16 by the first term of D(s) (Equation 17), the following
form is obtained for the transfer function:

2= L (;)(S) (18)
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The denominator of Equation 18 can be expanded in a
binomial expansion to obtain:

2(5) =f@) [1+86) +£G +&'+] @D

Note that f(s) has an e~ term, and g(s) contains an
€2 term. It can be shown that the Laplace-inverse
e~ has a delay of T = kl in the time domain (i.e., the
inverse transform of ¢! is identically zero for t < 7).
T is the time-of-flight delay of the line. Each term g'(s)
in Equation 21 corresponds to a reflection that appears
only after t = (2i 4+ I)T (a delay of 2iT from g'(s), and
T from f(s)). The first term has only an f(s) contribution,

accounting for the transmission of the signal with a time-of-
flight delay of 7. The term of primary interest is therefore
the first, f(s); in addition, it is desirable to reduce the
reflective effects represented by the g(s) terms.

In general, the inverse transform of the first term f(s)
consists of an impulsive component at ¢+ = 7, plus a non-
impulsiveresponse thatis nonzero forz > 7. The impulsive
component leads to a faithful reproduction of the input sig-
nal at the output, delayed but without dispersion; whereas
the non-impulsive part slows rise/fall times by distorting
the waveform. In order to improve delay, the impulsive
component of f(s) needs to be estimated and manipulated
by tapering.

If Zg and Z;, are resistive as assumed, this component,
denoted by M, is obtained by shifting f(s) to the left by T
(in the time domain) and using the initial value theorem for
Laplace transforms (derivation not shown):

2e= Sl KL,
M= ¢ Ij R l 22)
¢~ ¢
Zowo [k+ ] [+ )

3.2 Example of Delay Improvement by Tapering

The significance of the quantity M derived above is that
sharp edges of the input signal are transmitted with gain M,
without deterioration in rise/fall time but with a delay equal
to the time-of-flight T. It is desirable to have M = I. Long
lossy lines that are uniform (i.e., ¢ = 0) suffer from having
M < I, with the result that the output waveform rises
quickly to only a fraction of the input level, followed by
a slower rise qualitatively similar to that of RC charging.
Useful insight is obtained by considering the simplified
situation of Z; = co, the case of a lossy line terminated by
an open circuit. In this case, M simplifies to:

2L cf =
0 —8—5187”5(1—' T)

M= — 23
Lo + Zskwyp 23

If Zs is chosen to be 2 = ,/éigl, the characteristic
Wo (0)

impedance of the x = 0 end of the line, the first term
in Equation 23 becomes 1, and only the two exponential
terms are left. The first exponential term is a factor due to
the taper ¢, whereas the second is an attenuation due to the

(20)10ss factor d. In a uniform line ¢ = 0, leaving only the loss
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term which is always less than 1, leading to a diminishing
of the fast-changing part of the transmitted signal?>. By
setting ¢ < O (i.e., tapering to make the line thinner as x
increases), however, the attenuation due to the loss can be
compensated by the taper factor e~ ', bringing the value
of M back to the desired 1. Note also that uniform sizing,
which translates to manipulating wy in Equation 23, can
contribute at best a factor of 2 via the first term, whereas
the taper factor is not similarly limited.

This is illustrated by the simulation shown in Fig. 4.
The parameters of the interconnect (for the uniform case)
were obtained from [NCFH88]%; Zs was set to 70€2. The

2A best-case factor of 2 can be gained from the first term in Equation 23 by
having Zg = 0; but as seen in the examples in Section 4, even this may not be
sufficient to bring M up to 1.

IC = 0.468pF,R = 12.45Q.1 = 8.792nH, per cm; 16 cms long.



input signal (not shown) has a rise-time of 200ps and an
amplitude of 5V. The uniform line has M equal to approxi-
mately 0.65, which is the level to which the waveform rises
quickly; after which dispersion sets in and the waveform
rises slowly. The line with the 4:1 taper (¢ = —0.087)
has M =~ 1, leading to a near-perfect waveform. The more
aggressive 8:1 taper (¢ = —0.13) has M ~ 1.2 leading to
an overshoot, followed by dispersion in the opposite direc-
tion. The time-of-flight delay T = Ins is evident in all
cases; also, the effects of the first reflection (at about 3ns),
as evidenced by the small kinks, can be seen to have been
reduced to negligible amounts by the loss of the line.
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Figure 4: Simulation of the effects of taper with Z; = oo

For nonzero loads (Z; < o), it can be shown that an
optimal taper exists that maximizes M. If M >= ] at the
optimal taper, loss-induced delay can be eliminated entirely
by shaping.

The above example suggests that making the line thinner
in the direction of signal transfer may improve the quality
of the transmitted pulse even for the more general case
of capacitive loading. This is considerably more difficult
to analyze than the resistive case. Estimating the impulse
strength M cannot be used, as M (Equation 22) can be shown
to be always zero when Z; is capacitive, i.e., there is no
impulsive component in the transfer function. Instead, the
impulsive component is “spread out” into a non-impulsive
response that becomes sharper as Z; = -L- is increased,

sC

approaching an impulse as C;, — 0. With a finite value
of Cp, the rising/falling edges of the transmitted signal re-
semble, qualitatively, a waveform with two time constants:
the faster being a replacement of the impulsive component
of the resistive loading case, and the slower due to disper-
sion (see the figures in Section 4). Using the poles of ZEZ
for analyzing the capacitive loading case is currently under
investigation.
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4 Experimental Results

In this section, examples are presented that demonstrate
that tapering RLC lines can be useful for capacitive loading.
Interconnectis considered from a square MCM of 5cm side.
Instead of the usual 10% to 90% delay, a more conservative
0% to 90% delay measure is used for convenience to derive
numerical values for delay. Note that all delay numbers
include time-of-flight delays.

Two cases, with line lengths of 5cm and 10cm, are con-
sidered. For each case, two values of Zs are used: low
(lower bound for driver output resistance) and high (upper
bound). The load capacitance is fixed at 1pF unless other-
wise noted, and the input waveform, which starts at t = 0,
is a step with a rise time of 200ps and an amplitude of 5V.

For each value of Zs, three tapers are used: uniform, 4:1
and 8:1.
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Figure 5: Scm, low Zs, Z;=1pF

In Fig. 5, output waveforms for the Scm line with
low Zg are shown. As can be seen, the uniform taper
has an overshoot, which is heightened by tapering to 4:1
and 8:1. For this case, the tapering provides no appreciable
improvement in delay as all three waveforms are almost
identical up to the 4.5V (90%) mark. The ringing observed
in all three waveforms, especially at sharper tapers, is not
of major concern as gates usually have diode clamps that
eliminate its adverse effects. Fig. 6 illustrates the effect of
a diode clamp to 5V at the load. The heightening of the
overshoot caused by tapering can be observed.

In Fig. 7, the outputs of the Scm line for high Zs are
shown. It can be seen that the uniform case becomes dis-
persion limited at about 3.5V. The 4:1 taper leads to a wave-
form that is much sharper at higher values, while the 8:1
taper maintains the sharpness and displays a small over-
shoot. Both tapers reduce the delay to the time-of-flight
value, an overall improvement of about 33%. Note that the
percentage reduction in loss-induced delay alone is much



greater as it is essentially eliminated, the remaining delay
being the time taken for light to carry the signal through
the length of the line. With an increase in the load capac-
itance to 2pF, the results remain qualitatively similar (Fig.
Volis 8); the delay reduction in this case is about 25%. This
demonstrates that the worst-case delay over Zg variations
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The next two figures illustrate the result of tapering the
longer line of 10cm. The low Zg case is shown in Fig. 9.
The 4:1 taper leads to a delay reduction of about 43% while
the 8:1 taper leads to approximately 47% - both reduce the
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Figure 10: 10cm, high Zg, Z;=1pF

delay to close to its time-of-flight minimum. For the high
Zs case (Fig. 10), the improvements are 27% and 38%
respectively for the 4:1 and 8:1 tapers. The improvement
in worst-case delay over Zg variation is thus about 38%.

It may appear from the above that making the taper
sharper always improves delay, limited only by fringing
capacitance and manufacturability. This is however not
true, as illustrated in Fig. 11, in which the line Iength is
10cm, Zs is low, and the load capacitance has been in-
creased to 4pF. While the 4:1 and 8:1 tapers produce nearly
identical results with a delay reduction of about 27%, us-
ing a 64:1 taper results in a large increase in delay instead
of a reduction. This suggests that an optimal taper exists
when the load is capacitive; it is known that this is so for
the distributed RC line [FS94] and for the distributed RLC
line with resistive termination (as shown in the previous
section).

5 Conclusion

It has been shown that tapering distributed RL.C lines can
lead to improved delay through the peaking effect caused
by inductance. Simulations of realistic MCM interconnect
situations confirm delay reduction through tapering.

Current work is focussed on developing an analytical
technique for predicting the optimal taper when the line is
capacitively loaded.
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