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Abstract— The PPV is a robust phase domain macromodel for oscilla-
tors. It has been proven to predict oscillators’ responses correctly under
small signal perturbations, and capture nonlinear phase effects such as
injection locking/pulling. In this work, we present a novel approach to
extend the PPV macromodel to handle variability in circuit parameters.
We derive a modified PPV-based phase equation in which parameter
variations are modelled as special inputs. An important feature of our
technique is that it avoids PPV re-extraction, this resulting in great
convenience and efficiency in its use for, e.g., Monte Carlo type sim-
ulations. Using LC and ring oscillators as examples, we demonstrate the
capability of the proposed technique for capturing parameter variation
effects in injection locking analysis. Simulation results show that our new
approach accurately predicts the maximum locking range of oscillators
with speedups of two orders of magnitude over direct simulation.

Categories & Subject Descriptors:
B.7.2 [INTEGRATED CIRCUITS]: Design Aids—Simulation, Veri-
fication.
J.6 [COMPUTER-AIDED ENGINEERING]: Computer-aided design
(CAD).
General Terms: Algorithms, Theory, Verification.
Keywords: PPV, parameter variation, injection locking, nonlinear
macromodels, oscillator phase response.

I. INTRODUCTION

Oscillators are important circuit components in both analog and
digital systems. For example, in communications, oscillators are used
to generate signal carriers upon which data signals are modulated. In
digital systems, different functional blocks are synchronized by clock
signals which are generated by phase-locked loops (PLLs) [1]. In
spite of the ubiquity of oscillators in circuits, their design continues
to present challenges. The difficulties stem fundamentally from oscil-
lators’ innate neutral phase stability, which makes them very sensitive
to any kind of interference, including circuit parameter variations [2]
and external noise perturbations. Before an oscillator design is finally
taped out and sent for fabrication, intensive simulations are typically
performed to best ensure that the system works well under worst case
scenarios.

Direct time-domain simulation of oscillator-based systems at the
level of SPICE [3] is typically impractical because of its great
inefficiency. Transient simulation algorithms easily accumulate
large numerical errors in phase due to oscillators’ neutral phase
stability, resulting in inaccurate frequency estimations. To limit
simulation inaccuracy, very small timesteps (e.g., many hundreds
of steps per cycle) need to be used in oscillator simulations. In
some oscillator-based systems (e.g., PLLs with large divide ratios),
transients can last hundreds of thousands of cycles. With each cycle
requiring hundreds of small timesteps for accurate simulation of
the embedded voltage-controlled oscillator (VCO), simulations can
last days or even weeks. This efficiency problem is further aggravated
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when parameter variations need to be considered. Designers need to
simulate the same circuit hundreds/thousands times to find the worst
case. As a result, devising more efficient and accurate simulation
approaches is important.

To improve simulation efficiency for oscillator-based systems,
phase macromodelling techniques are widely used. In such ap-
proaches, a small phase-domain oscillator macromodel is used to
replace the original oscillator circuit. The much smaller phase
macromodel has much better numerical efficiency due to its small
size; furthermore, operating in the phase domain enables simulations
to take much larger timestep than possible in the voltage/current
domains of full SPICE-level simulation. To ensure accuracy, however,
it is of paramount importance to use a phase macromodel which
correctly captures the oscillator’s response to perturbations. Whereas
various phase-domain oscillator macromodels have been proposed
[4]–[7], it has been well established in recent years [8]–[12] that
the perturbation projection vector (PPV) macromodel proposed in
[7] is the best currently available. The PPV macromodel is not only
able to predict the phase responses of oscillators under small signal
perturbation accurately, but it also correctly captures nonlinear phase
effects (e.g., injection locking, phase pulling) as well as a variety of
other effects [8], [9].

The PPV macromodel combines a scalar, nonlinear time-shifted
phase equation [7], [13], [14] with a small linear periodic time-
varying (LPTV) system for capturing slowly-dying amplitude varia-
tions [15]. The nonlinear phase equation captures the phase response
of the oscillator under the influence of perturbations, and the LPTV
amplitude macromodel can be incorporated in case when second-
order effects due to amplitude variations are important and need to be
considered. The PPV macromodel has many applications, including
predicting injection locking in oscillators [8], and estimating phase
jitter and transient response of PLLs under loop nonidealities [9].
However, the PPV macromodel, as developed so far, only predicts
oscillator behavior under electrical perturbations (such as power
supply interference and thermal noise); it is not variability aware,
i.e., it does not take into account, e.g., random and systematic process
variations.

Nowadays, chip design is in the deep-submicron era: devices are
becoming smaller and smaller, and fabrication techniques cannot
guarantee that devices have identical parameters. Parameter vari-
ability is playing an increasingly important rôle in limiting chip
performance and correctness; indeed, it has become possibly the
most crucial issue in circuit design. Simulations using nominal
design parameters are no longer sufficient, since achieving them in
fabrication is more the exception than the rule. Designers run Monte-
Carlo simulations over many combinations of varying parameters,
requiring hundreds, thousands or even millions of simulations, to
ensure that worst case performances still remain within spec. The
obvious way to use PPV macromodels for parameter variability
analyses is to simply re-extract the PPV macromodel for each choice
of parameters. This is, however, computationally expensive, since it
involves a steady-state solution (such as shooting [16] or harmonic
balance [17]) of the full SPICE circuit in every Monte-Carlo run.
Hence, there has been considerable interest in PPV macromodels that
embed circuit parameters directly and do not require re-extraction
when parameters change.

In this work, we extend the PPV approach by directly embedding
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varying circuit parameters into the macromodel. We derive a new non-
linear phase equation which not only predicts the phase response due
to electrical perturbations applied to the oscillator, but also captures
the impact of parameter variability on the oscillator’s phase deviations
simultaneously. A crucially important feature of our approach is that
the oscillator’s variability-equipped PPV macromodel does not need
to be re-extracted when circuit parameters are changed. Instead, it
needs to be extracted only once for the nominal circuit; by virtue of its
directly incorporating the circuit’s varying parameters and avoiding
repeated extraction, this PPV macromodel provides large speedups
for Monte-Carlo simulations.

We evaluate our technique on LC and ring oscillators, predict the
maximum locking range of injection locking, and compare results
with SPICE-level full transient simulation and the original PPV
macromodel. In each case, circuit parameters are chosen to varying
and two situations – when the external perturbations exist and do not
exist – are simulated. Numerical results show that the new variability-
equipped PPV macromodel is able to correctly predict oscillator
phase responses and locking ranges in the presence of parameter
variation.

The remainder of the paper is organized as follows. In Section II,
we briefly introduce the PPV macromodel. In Section III, we derive
an improved nonlinear phase equation that is able to predict the phase
response of oscillators due to parameter variations. In Section IV, we
validate the new phase equation by predicting injection locking in LC
and ring oscillators.

II. PREVIOUS WORK – PPV MACROMODEL

In this section, we briefly introduce the PPV macromodel, and
discuss its limitations when parameter variations need to be taken
into consideration. For simplicity and clarity, we use ODE form of
oscillator equations in this paper1.

A general oscillator under perturbation can be expressed with an
ODE equation

ẋ(t)+ f (x(t)) = b(t), (1)

where b(t) is a vector of perturbations applied to the free running
oscillator, x(t) is the state variables (e.g., node voltage, branch
current,etc.) and f (x) models the nonlinearity in the oscillator.

According to [7], the solution of the perturbed oscillator can be
expressed as

xp(t) = xs(t +α(t))+y(t +α(t)), (2)

where xs(t) is the steady-state solution of the unperturbed oscillator.
The effect of the perturbations b(t) is divided into two parts: the
phase deviation α(t) and the amplitude variation y(t +α(t)).

For deriving macromodels which calculate α(t) and y(t + α(t))
under small perturbation b(t), (1) needs to be linearized over its
steady state solution

ȯ(t) ≈− ∂ f (x)
∂x

|xs(t)o(t)+b(t)

=−G(t)o(t)+b(t),
(3)

where xs(t) is the steady state orbit of the oscillator, and o(t) is the
small deviation from the steady state xs(t). (3) is a linear periodic
time-varying (LPTV) system. Its homogenous part is

ȯ(t) = −G(t)o(t). (4)

According to the Floquet theory [18], (4) has a set of n linear
independent solutions

zi(t) = eµi t ui(t),1 ≤ i ≤ n. (5)

In this equation, n is the system size, µi is the Floquet exponent,
and ui(t) is the corresponding Floquet eigenvector, which is a T
periodic waveform (T is the oscillator period). For an oscillatory

1The theory can be easily extended to DAE form; our implementation in
for general DAEs.

LPTV system, there must exist one Floquet exponent which is 0.
For convenience, we choose µ1 = 0, and the corresponding Floquet
eigenvector can be proven [7] to be

u1(t) = ẋs(t). (6)

The derivative of the steady state solution is a solution of the
homogenous part of the oscillator LPTV system.

The adjoint system of (4) is

ȯT (t) = oT (t)G(t), (7)

whose solutions can be expressed as

wi(t) = e−µi t vi(t),1 ≤ i ≤ n. (8)

vi(t) is the Floquet eigenvector of the adjoint system. We also
have µ1 = 0, and the corresponding Floquet eigenvector v1(t) is
a very important quantity, which represents the oscillator’s phase
sensitivity to perturbations. v1(t) is called “perturbation projection
vector (PPV)” in [7]. ui(t) and vi(t) satisfy biorthogonality conditions

vT
i (t)u j(t) = δi j. (9)

It has been shown in [7] that the oscillator phase deviation α(t)
due to the perturbation b(t) is governed by a scalar, nonlinear time-
shifted differential equation

α̇(t) = vT
1 (t +α(t)) ·b(t) (10)

The amplitude variations y(t̂) is a linear combination of
{z2(t̂), ...,zn(t̂)} which satisfies

vT
1 (t̂) · y(t̂) = 0, (11)

where t̂ = t +α(t).
In (10), the PPV is a vector of waveforms with size of n (the

oscillator’s system size). Each waveform represents the oscillator’s
phase sensitivity to perturbation injected to the corresponding circuit
node. b(t) is a also vector of size n, representing the perturbations
applied to each oscillator node. The dot product translate these two
vectors into a scalar, as a result, we obtain a simple one-dimensional
differential phase equation which has very good numerical stability
and is very easy for solving.

The PPV waveforms, which are crucial for solving (10), can be
extracted from the SPICE-level description of oscillator circuits by
numerical methods effectively [7], [14] both in the time domain and
the frequency domain. Once the PPV waveforms are available, (10)
can be solved efficiently and the oscillator’s phase deviation is ob-
tained. It has been demonstrated that (10) is an exact oscillator phase
model for small signal perturbations [7] which captures oscillators’
phase deviation accurately when the perturbation is relatively small.
And (10) is a nonlinear equation, which is proven to be able to capture
nonlinear phase effects (e.g., injection locking) in oscillators [8].

Even though the PPV macromodel has many advantages, it fails
when the parameter variation in the circuit needs to be considered.
No terms of parameter being explicit in (10), this equation cannot
capture phase deviation due to parameter variations. Indeed, PPV
waveforms contain the parameters implicitly, therefore they have to be
re-extracted if any parameter is changed in the circuit. This limitation
greatly slows down the Monte Carlo type simulation.

III. NEW PPV EQUATION WITH PROCESS VARIATION

CONSIDERATION

In this section, we derive an improved oscillator phase equation,
in which phase deviation due to parameter variation is able to be
captured.

We start from the oscillator ODE equation. However, this time we
consider circuit parameters, and add the circuit parameter term p to
(1)

ẋ(t)+ f (x(t), p) = b(t). (12)

In this new equation, the nonlinear f () is not only the function of
state variables x(t), but also the function of circuit parameter p.
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Considering the parameter variations, we have

p = p∗ +∆p, (13)

where p∗ is the nominal parameter and ∆p is the parameter deviations
over p∗. Hence, (12) can be rewritten as

ẋ(t)+ f (x(t), p∗ +∆p) = b(t). (14)

Now we assume the steady state solution of the circuit under nominal
parameter p∗ is xs(t), or xs(t) satisfies

ẋs(t)+ f (xs(t), p∗) = 0. (15)

The perturbed solution (due to both input b(t) and parameter variation
∆p) can be expressed as

xp(t) = xs(t +α(t))+y(t +α(t)) (16)

= xs(t̂)+y(t̂). (17)

where t̂ = t +α(t). Substituting (17) into (14), we have

d
dt

(xs(t̂)+y(t̂))+ f (xs(t̂)+y(t̂), p∗ +∆p) = b(t) (18)

Applying Taylor expansion to (18) over steady state xs(t̂), and
dropping all high order terms, we obtain

ẋs(t̂)α̇(t)+ ẏ(t̂)+G(t̂)y(t̂)+SFp(t̂)∆p = b(t), (19)

where α̇(t) = d
dt α(t), ẋs(t̂) = d

dt̂ xs(t̂), ẏ(t̂) = d
dt̂ y(t̂) and

G(t̂) =
∂ f
∂x

|xs(t̂),p∗ (20)

SFp(t̂) =
∂ f
∂ p

|xs(t̂),p∗ (21)

There are both phase deviation term α(t) and amplitude variation
term y(t̂) in (19). To obtain a phase equation like (10), we need a
way to cancel out y(t̂) term in (19). Considering the relationship of
v1(t̂) and y(t̂) in (11), we multiply v1(t̂) to both side of (19), and
obtain

vT
1 (t̂)ẋs(t̂)α̇(t)+vT

1 (t̂)ẏ(t̂)+vT
1 (t̂)G(t̂)y(t̂)+vT

1 (t̂)SFp(t̂)∆p = vT
1 (t̂)b(t).

(22)
From (6), we know u1(t̂) = ẋs(t̂), and vT

1 (t̂) · u1(t̂) = 1 due to
biorthogonality between ui(t) and vi(t). Hence, we have

vT
1 (t̂)ẋs(t̂) = 1. (23)

We know v1(t) is a solution of the adjoint system

ȯT (t) = oT (t)G(t). (24)

Hence, we have
v̇T

1 (t̂) = vT
1 (t̂)G(t̂). (25)

Right multiple y(t̂) to both sides of (25) and add vT
1 (t̂)ẏ(t̂) to both

side, we get

vT
1 (t̂)ẏ(t̂)+ v̇T

1 (t̂)y(t̂) = vT
1 (t̂)ẏ(t̂)+vT

1 (t̂)G(t̂)y(t̂) (26)

⇓ (27)

vT
1 (t̂)ẏ(t̂)+vT

1 (t̂)G(t̂)y(t̂) =
d
dt̂

(vT
1 (t̂)y(t̂)). (28)

Since y(t̂) is amplitude variation, which satisfies (11), we have

vT
1 (t̂)ẏ(t̂)+vT

1 (t̂)G(t̂)y(t̂) = 0. (29)

Considering (22) with (23) and (29), we get

α̇(t)+vT
1 (t̂)SFp(t̂)∆p = vT

1 (t̂)b(t). (30)

Then we substitute t̂ with t +α(t) in (30), and obtain a new phase
equation

α̇(t) = vT
1 (t +α(t)) · (b(t)−SFp(t +α(t))∆p). (31)

Compared to the original PPV phase equation (10), the new phase

equation has an extra term SFp(t +α(t))∆p, which captures the phase
deviation due to parameter variation. Using this new phase equation,
we don’t need to re-extract the PPV when circuit parameters change.
This provides huge speedup. Moreover, the derivation bears the fact
that multiple parameter variance can be handled at one time.

IV. NUMERICAL SIMULATION RESULTS

In this section, we apply the method proposed in Section III to
two kinds of oscillators, LC and ring. For both, we extract the
PPV on nominal parameters, and then simulate the phase deviation
in two cases–with and without external perturbation, while varying
some parameters. Results are validated using full circuit transient and
harmonic balance simulation. We demonstrate that our new phase
equation is able to correctly predict the oscillator’s response in the
presence of circuit parameter variations and external perturbations,
while the original PPV macromodel [7] fails. The results have good
match to the full SPICE-level simulation results, with speedups of
30−100×.

A. 1-GHz LC Oscillator

Figure 1 shows the block diagram of a negative resistance LC
oscillator. Its differential equations are

d
dt

iL(t) =
vC(t)

L0
d
dt

vC(t) = − iL(t)
C0

− vC(t)
R0C0

− S
C0

tanh
(Gn

S
vC(t)

)
, (32)

in which R0, L0, and C0 are the resistance, inductance, and capac-
itance of the LCR tank (R0 = 100Ω,L0 = 4.869e− 7/(2π)H,C0 =
2e−12/(2π)F ). S and Gn are parameters of the non-linear negative
resistor. These parameters make the circuit oscillate at a resonance
frequency of about 1GHz, and the amplitude of the capacitance
response voltage vC is about 0.5852V.

−

b(t)

i=
f(

v)

Fig. 1. A simple LC oscillator.

1) Frequency/Phase Deviation Due to Parameter Variations: In
this section, we investigate the phase deviation of the oscillator
due to circuit parameter variation using our new phase equation,
and compare the results with harmonic balance simulation. The
inductance is chosen to be the varying parameter.

When there is a ∆L/L0 = 0.005 variation, the response phase
deviation is shown in Figure 2. According to [8], the slope of α(t)
stands for the relative frequency difference ∆ f / f0. The result can be
validated by a rough hand calculation. The frequency of the simple
LC oscillator is 1

2π
√

(L0+∆L)C0
. Considering ∆L/L0 is small, we do

Taylor expansion to it and drop the high order terms. The frequency
can be written as 1

2π
√

L0C0
(1− ∆L

2∆L0
). Thus, in the presence of a 0.005

relative variation of the inductance L, the response relative frequency
difference ∆ f / f0 will be approximately -0.0025, which is close to our
result.

For a precise validation, harmonic balance analysis is performed
on several variation points. Figure 3 depicts the relative frequency
difference at different variation points, using both the proposed
macromodel and harmonic balance analysis. The curves match well
when ∆L/L0 is under 0.02. When the ∆L/L0 becomes larger, the
proposed nonlinear macromodel will lose accuracy, because our new
equation is based on the assumption that parameter variation is small.
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Fig. 3. Frequency Difference VS Parameter Variation(LC OSC)

2) Injection Locking Analysis: In this section, our new equation
(31) is used to capture injection locking of the LC oscillator. The
inductance is chosen as the varying parameter and the external
perturbation is added as a voltage source in series with the inductor.
Several simulations are done with different injection magnitude,
injection frequency and parameter variation, using both the new
equation and full SPICE-like simulation.

In Figure 4, we compare the frequency spectrum of the response
between these two methods. ∆L/L0 is 0.005 and the injection
frequency is 1.01 f0 ( f0 is the natural frequency of the oscillator
computed by harmonic balance method). Three injection magnitude
case (0.012,0.013,0.014V ) are simulated. The figures on the left-
hand side are from full simulation and those on the right-hand
side are from the macromodel. By comparing the spectrum on both
side, we find that the result of our proposed macromodel has a
good match to that of the full SPICE-like simulation. Vertically the
three figures describe the process of injection locking. When the
oscillator is not locked to the injection frequency (Figure 4(a)), the
response signal has no magnitude at the injection frequency. When the
oscillator starts locking to the injection frequency (Figure 4(c)), the
response signal has magnitude at both the injection frequency and
the original frequency. After the oscillator is locked (Figure 4(e)),
fundamental frequency of the oscillator will move to the injection
one. Figure 5 plots the time domain response with the injection
signal. The magnitudes are normalized for a better display.
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Fig. 4. Procedure of Injection Locking(LC OSC)

By solving (31) at different external perturbations, the locking
range, within which the frequency of the oscillator can lock to the
injection one, can be determined. Figure 6 plots the locking range
calculated by the original macromodel, the new proposed one and
the full SPICE-like simulation, when ∆L/L0 = 0.005. Dash line is
the result of the original macromodel, solid line is that of the new
proposed one and the ”+” is got from full SPICE-like simulation. It is
evident that result of our new equation fits that of the full simulation
well while the original macromodel fails. Using the macromodel, we
obtain speedup of 30×, compared to full SPICE-level simulation.

By calculating the locking range with different parameter variation,
we can plot Figure 7, which describes locking range shift induced
by parameter variation. We observe that the locking range decreases
with the increase of the inductance. This trend is correct because
the increase of the inductance causes the natural frequency to drop,
hence makes it harder for the oscillator to lock to a perturbation
whose frequency is bigger than the natural one. With our proposed
technique, capturing this shift requires a low computational cost.

B. Three-Stage Ring Oscillator

Figure 8 shows the block diagram of a three-stage ring oscillator.
Its differential equations are

d
dt

v1(t)+
v1

R1C1
− tanh(Gm3v3(t))

R1C1
= 0

d
dt

v2(t)+
v2

R2C2
− tanh(Gm1v1(t))

R2C2
= 0

d
dt

v3(t)+
v3

R3C3
− tanh(Gm2v2(t))

R3C3
= 0

(33)

Each stage of this ring oscillator is identical. We have C1 = C2 =
C3 = 2nF , R1 = R2 = R3 = 1kΩ, and Gm1 = Gm2 = Gm3 = −5. The
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oscillator has a natural frequency of 153498Hz and a maximum load
current of A0 = 1.2mA.

1) Frequency/Phase Deviation Due to Parameter Variations: Like
the LC Oscillator case, we simulate the phase deviation due to
parameter variation. The capacitance in the first stage is chosen to
be the varying parameter. We observe that the slope of the phase
deviation is -0.058 induced by a 20% relative parameter variation
(∆C1/C0 = 0.2), shown in Figure 9.

For this case, the harmonic balance method is also used to validate
the results. Figure 10 compares the response relative frequency
difference at different variation points. The curves fit well when the
∆C1/C0 is less than 0.2.

2) Injection Locking Analysis: In this section, (31) is used to
capture injection locking of the three-stage ring oscillator. The
capacitance is chosen as the varying parameter and the external
perturbation is added as a current source at the input node of the
first inverter.

Figure 11 plots the locking range calculated by the original macro-
model, the new proposed one, and the full SPICE-like simulation,
when ∆C1/C0 = 0.02. Dash line is the result of the original macro-
model, solid line is that of the proposed one and the ”+” is from full
SPICE-like simulation. This figure also depicts the clear difference
between the result of the two macromodels. The result of the our
new equation is validated again by the full SPICE-like simulation,
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Fig. 7. Locking range shift due to parameter variation(LC OSC)

Fig. 8. A three-stage ring oscillator.

shown in Figure 11. Compared to full SPICE-like simulation, we
obtain about 100× speedup from the macromodel.

Figure 12 depicts the locking range shift induced by parameter
variation. The locking range decreases with the increase of the ca-
pacitance. This trend is correct because the increase of the capacitance
causes the natural frequency to drop, hence makes it harder for the
oscillator to lock to a perturbation whose frequency is bigger than
the natural one.

V. CONCLUSIONS

We have enhanced the PPV macromodel by equipping it with a
direct dependence on varying parameters. The new PPV macromodel
remains in the same functional for as originally, except that new
“input” are added for parameter variations. We have validated that
the PV-PPV macromodel is able to accurately predict oscillator
phase responses and injection locking phenomena in the presence
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Fig. 10. Frequency Difference VS Parameter Variation(Ring OSC)
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Fig. 11. New locking range validated by full simulation, ∆C = 0.02C0(Ring
OSC)

of significant parameter variations. A crucial feature of PV-PPV is
that it removes the need to re-extract oscillator PPV macromodels
for every instance of a Monte-Carlo run involving varying circuit
parameters.
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