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ABSTRACT

Transient waveform sensitivities are useful in optimization and also pro-
vide direct insight into system metrics such as delay. We present a novel
method for finding parametric waveform sensitivities that improves upon
current transient adjoint methods, which suffer from quadratic complex-
ity, by applying barycentric Lagrange interpolation to reduce computation
to near linear in the time-interval of interest. We apply our technique
to find sensitivities of a “nonlinear” Elmore-delay like metric in digital
logic and biochemical pathway examples. Our technique achieves order-
of-magnitude speedups over traditional adjoint and direct sensitivity com-
putation.
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B.8.2 [Integrated Circuits]: Performance and Reliability—Performance

Analysis and Design Aids

General Terms

Algorithms, Design, Reliability, Performance
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1. INTRODUCTION
Estimating and optimizing gate and interconnect delays have long been
central to IC design. With extreme scaling in transistor feature sizes, vari-
ability in every step in the manufacturing process – translating to variabil-
ity in the delay of individual transistors – has become of growing con-
cern [4, 5]. To enable circuit performance metrics (such as critical path de-
lays) to be optimized over the multidimensional parameter space induced
by the manufacturing variability, accurate and effective methods for evalu-
ating delay sensitivities are especially important today. In addition to their
use in optimization, sensitivities have an immediate merit of its own, al-
lowing designers to obtain insight about the impact that various system
parameters have on delay.
Over more than two decades, many models and algorithms have been de-
vised for accurate prediction of delay and its use for optimal design of ICs
(e.g., [6, 10, 13, 19–21]). Most of the work on delay modeling and sensitiv-
ity calculation, has focused on estimating delays through the use of linear
time invariant (LTI) approximations, such as RC or RLC networks [18, 24].
While LTI techniques are appropriate for estimating delays of individual
segments of interconnect [19, 20, 23, 25], they can only approximate de-
lays through nonlinear elements such as logic gates or sequential elements.
Since logic elements typically involve large signal swings and operation in
strongly nonlinear regimes (e.g., involving saturation and hysteresis), the
appropriateness of LTI approximations can be very suspect. The same is
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true for systems that involve many nonlinear logic and interconnect el-
ements. Alternative approaches such as [8] apply proprietary, nonlinear
metrics for delay optimization, but rely on piecewise-linear device model
approximations [11].
In this work, we introduce a novel method for efficient computation of
transient sensitivity waveforms, termed BLAST (Barycentric Lagrange
Adjoint Sensitivity Transient). We apply this method to analyze the sen-
sitivity of delay to variations in system parameters. To demonstrate the
utility of our method, we propose a nonlinear generalization of the clas-
sic Elmore delay metric for LTI systems, i.e., a delay metric defined using
waveforms in strongly nonlinear systems, that reduces to Elmore delay for
LTI systems. This delay metric is directly motivated by the time-domain
definition of Elmore delay (using LTI impulse/step responses); it can be
computed as a simple post-processing operation after regular (fully non-
linear) transient simulation. A key feature of this delay metric is that it
uses information from waveform values over an entire time interval (i.e.,
not just a single timepoint, or a few discrete timepoints)1, thereby taking
full account of detailed shapes of waveforms. This makes the metric more
representative and more broadly applicable than simple alternatives (such
as the 50% rise-time point of a step response).
To find the sensitivities of the proposed delay metric to system parameters,
we apply transient sensitivity analysis followed by simple post-processing
of the sensitivity waveforms. Existing techniques for “efficient” (i.e., ad-
joint based) transient sensitivity analysis [9, 14, 17] suffer from quadratic

computational complexity with respect to the length of the time interval
of interest, making their application for computing entire waveforms of
transient sensitivity (as opposed to the sensitivity at a single time-point)
inefficient.
BLAST solves the problem of quadratic time complexity by applying a
quadrature technique known as barycentric Lagrange interpolation (BLI)
[3] to the transient adjoint computation problem. In its essence, BLI is able
to approximate a waveform over an interval, to extremely high accuracy,
using only a few carefully chosen samples (see section §2.3). As a re-
sult, the quadratic time complexity of existing transient adjoint sensitivity
methods is reduced to approximately linear. As noted earlier, the waveform
sensitivities generated using BLAST are post-processed to obtain network
delay sensitivities. The use of BLI also makes this post-processing step
highly accurate and computationally inexpensive.
Being able to compute sensitivities of “nonlinear delays” efficiently makes
it possible to obtain design insights regarding, e.g., which parameters have
the most impact on delay, thus enabling the designer to focus on the most
relevant parameters for delay stability — not only for individual logic or
cell library components, but for complex combinational or sequential cir-
cuits involving many gates and interconnect segments. The near-linear
time complexity of BLAST also facilitates use in delay optimization flows,
which make repeated calls to sensitivity routines.
Furthermore, BLAST is equally applicable to the domain of quantitative
biology, where recent research has focused on novel synthetic genetic and
biochemical pathways such as genetic inverters, toggle switches, oscil-
lators, etc. [2]. Since such elements are inherently strongly nonlinear,
BLAST is particularly well suited for finding their delay sensitivities.
We demonstrate BLAST on examples from electronics and biology, ob-
taining average speedups of 17× over adjoint sensitivities without BLI,
and 30× over direct transient sensitivity computation. We also demon-
strate how non-intuitive design insights into the relative importance of pa-
rameters in a delay chain can be observed immediately, from the delay

1Details are provided in the supplementary material §S5.301



sensitivities obtained by BLAST. We emphasize that BLAST can be read-
ily applied to any delay metric that uses multiple time points to estimate
delay, i.e., it is not limited to our simple Elmore-like metric.
The remainder of the paper is organized as follows. §2 provides brief back-
ground on direct and adjoint sensitivity analysis as well a basic overview
of the BLI method. We describe the application of BLI to adjoint sensitiv-
ities in §3. §4 presents our “nonlinear” Elmore-like delay metric. Results
on examples are presented in §5 .

2. PRELIMINARIES

2.1 Direct sensitivity computation for Differential-
Algebraic Equations (DAE) systems

We assume that the system of interest is represented as a set of differential-
algebraic nonlinear equations [27]:

d

dt
[~q (~x(t))] + ~f (~x(t)) +~b(t) = 0, (1)

where ~x(t) represents the internal state vector of dimension n, ~f(·), ~q(·)

capture static and dynamic terms, respectively. ~b(t) represents the time-
varying input to the system. As we are interested in the sensitivities of the
system to external parameters, we further assume that the internal state,
and both static and dynamic terms of the system, depend on a vector of
parameters ~p of dimension np, allowing us to rewrite the DAE as

d

dt
[~q (~x(t, ~p), ~p)] + ~f (~x(t, ~p), ~p) +~b(t) = 0. (2)

We assume the initial condition is given at time t = 0, and it is ~x(0) = ~x0.

Moreover, we assume for simplicity that ~x0 and ~b(t) do not depend on ~p;
it is simple to extend our analysis if this is not the case.
In transient sensitivity analysis, we are interested in finding the time-varying
sensitivities of the solution of (2) with respect to ~p. To achieve this goal,
we first solve the DAE system for some nominal parameter set ~pnom by
running a full transient analysis. Denoting the solution of (2) as ~xnom(t),
we let ∆~p be a small perturbation to the parameters vector ~pnom and ∆~x
be a small perturbation to the solution ~xnom. We then start the process of
linearizing the system (2) around its nominal solution:

d

dt
[~q (~xnom(t) + ∆~x(t), ~pnom +∆~p)]

+~f (~xnom(t) + ∆~x(t), ~pnom +∆~p) +~b(t) = ~0.

(3)

Denoting the Jacobian matrices w.r.t state variables by

C(t) =
∂~q(~x, ~p)

∂~x

∣∣∣∣
~xnom(t),~pnom

, G(t) =
∂ ~f(~x, ~p)

∂~x

∣∣∣∣∣
~xnom(t),~pnom

, (4)

and the Jacobian matrices w.r.t parameters by

Sq(t) =
∂~q(~x, ~p)

∂~p

∣∣∣∣
~xnom(t),~pnom

, Sf (t) =
∂~q(~x, ~p)

∂~p

∣∣∣∣
~xnom(t),~pnom

,
(5)

we can now expand ~q(·) and ~f(·) in first-order Taylor series and simplify
(3) to

d

dt
[C(t)∆~x(t) + Sq(t)∆~p] +G(t)∆~x(t) + Sf (t)∆~p ≃ ~0. (6)

Denoting the sensitivity matrixM(t) = ∂~x
∂~p

∣∣∣
~xnom(t),~pnom

and “dividing” by

∆~p, it can be shown that (6) is equivalent to

d

dt
[C(t)M(t) + Sq(t)] +G(t)M(t) + Sf (t) = ~0. (7)

For clarity, we note that C(t),G(t) ∈ R
n×n and Sq(t),Sf (t),M(t) ∈

R
n×np . M(t) is the matrix of transient sensitivities we are interested in.

Rearranging (7) into the form of (2) yields:

d

dt
[C(t)M(t)] +G(t)M(t) +






d

dt
[Sq(t)] + Sf (t)

︸ ︷︷ ︸
S(t)





= ~0. (8)

If (8) is solved as a matrix initial value problem with initial condition
M(0) = 0, we obtain transient sensitivities in “direct” fashion. Note that
(8) can be solved as np separate vector DAE systems, using the columns
of S as inputs and solving to obtain the columns of M . Once M(t) is
available, it is easy to find ∆~x in (6) via

∆~x(t) = M(t)∆~p. (9)

For a small number of parameters np, direct sensitivity computation as
above involves the same order of computation as the transient solution it-
self. However, if the system size n and the number of parameters np are
both large (furthermore, np ≫ n for typical real-life systems), one has to
keep track of the np×n entries of the sensitivity matrix at every time point
of the simulation, increasing computation and memory requirements to the
point of infeasibility. Getting around this computational bottleneck is the
primary motivation for adjoint transient sensitivity, where the sensitivities
of a few selected “outputs”, with respect to all parameters, can be obtained
more efficiently than by the above direct route.
A practical note concerning the computation of S(t) is appropriate at this
point. manual, analytic differentiation of f(·) and q(·) to obtain entries
of S(t) tends to be laborious and error prone. Run-time automatic dif-
ferentiation [12, 22] is an attractive solution for this issue, though it is
typically more compute-intensive than the use of hard-coded derivatives.
In this work, we have extended [22] and applied the extended automatic
differentiation method to compute S(t).

2.2 Adjoint Operator for Linear Differential Equa-
tions

A linear differential equation can be written in the form of (2) as:

d

dt
C(t) ~x(t) +G(t) ~x(t) = ~u(t). (10)

(10) can be viewed as a linear operator L: ~u(t) 7→ ~x(t) i.e., a linear
mapping between inputs ~u(t) in a domain D and solutions ~x(t) in a range
R. It is a well known fact that any linear mapping has an adjoint operator
[15]. The adjoint operator, usually denoted by L†: ~y(t) 7→ ~z(t), takes its
input in the range space R and produces its output in the domain space D.
Rewriting equation (6) in the same form as (10), we get

d

dt
[C(t)∆~x(t)] +G(t)∆~x(t) = ~u(t) = −S(t)∆~p. (11)

Solving (11) defines the mapping L: ~u(t) 7→ ∆~x(t). It can be shown2 that
the adjoint operator L†: ~y(t) 7→ z(t) of L: ~u(t) 7→ ∆~x(t) is given by the
differential equation

−C∗(t)
d

dt
~z(t) +G

∗(t)~z(t) = ~y(t). (12)

Assume we are interested in the sensitivities of some scalar output de-
fined as d(t) = ~c∗~x(t), where ~c∗ is a row vector; assume further that
we are specifically interested only in the sensitivity d(T0), i.e., limiting
our attention to a specific time point t = T0 on the integration interval
[0, T ]. The reason for this will become clearer in the following section, as
we demonstrate how finding the sensitivity at a small number of carefully
chosen points allows us to approximate the sensitivity for any time point
t ∈ [0, T ].
It can be shown3 that the sensitivity vector of the output d(t) at a point
t = T0, denoted ~md(T0), is given by

~md(T0) =
~c∗∆x(T0)

∆~p
= −

∫ T

0

~z
∗

~c,T0
(τ )S(τ )dτ, (13)

where ~z~c,T0
(t) is obtained by solving the adjoint system

−C∗(t)
d

dt
~z(t) +G

∗(t) ~z(t) = ~c δ(t− T0), (14)

backwards from t = T to t = 0, with initial condition ~z(T ) = ~0. The
reader is invited to follow our analysis in §S3 of the supplementary mate-
rial; equations (13) and (14) are obtained simply by replacing ~e1 by ~c.
Note that the sub-indices of ~z~c,T0

(t), namely ~c and T0, indicate that the
solution of the adjoint system (12) depends on the input ~y(t) = ~cδ(t−T0).

2Details are provided in the supplementary material §S2.
3See the supplementary material §S3.302



Observing equation (14) reveals that it cannot immediately be solved using
standard numerical integration methods, because the input on the RHS is
a δ-function. Numerical methods are not well suited for δ-function inputs,
which involve an infinite value at a single time-point. Therefore, further
analytical machinery is needed to re-phrase (14) in a form suitable for nu-
merical integration. To simplify this analysis, we now restrict ourselves
to ODEs: i.e., ~q(~x) ≡ ~x in (2), leading (w.l.o.g. for invertible C) to
C(t) ≡ In×n. For the ODE case, (14) thus becomes

−
d

dt
~z(t) +G

∗(t) ~z(t) = ~c δ(t− T0). (15)

It can be shown4 that finding the solution of (15) over the interval [0, T ] is
equivalent to solving the homogeneous part of (15) i.e.,

−
d

dt
~z(t) +G

∗(t) ~z(t) = ~0, (16)

with initial condition ~z(T0) = ~z~c,T0
(T0) = ~c, backwards from t = T0 to

t = 0. Applying this result, we can compute the sensitivity ~md(T0) using
standard numerical methods: we first obtain the solution of the homoge-
neous system (16) using ~z(T0) = ~c as the initial condition, then compute
the integral (13). In section §3, we will define an algorithm for obtaining
~md(T0) based on this analysis.

2.3 Lagrange interpolation and Chebyshev Nodes
Details about Lagrangian interpolation can be found in most textbooks on
numerical analysis such as [1], but in the interest of self-sufficiency, we
briefly survey the basic concepts of the method here. Given a function
f(x) and p sample points {c1, · · · , cp}, the unique polynomial of degree
p− 1 that agrees with f(·) at each of these points is

L(x) =

p∑

m=1

um(x)f(cm), (17)

where um(x) is the mth Lagrange polynomial (of degree p− 1)

um(x) =

∏p
k=1

k 6=m

(x− ck)

∏p
k=1

k 6=m

(cm − ck)
. (18)

p is referred to as the interpolation order.
In this work, we are interested in approximating the true sensitivity wave-
form ~md(t) by an Lagrangian approximationL(t)which agrees with ~md(t)
exactly at a small number p of sample points {c1, · · · , cp}. To estimate
the quality of such an approximation, a bound on the error at any point in
the interval t ∈ [0, T ] is useful. By choosing the sample points ci to be
Chebyshev nodes over the interval [0, T ], it can be shown that the error
goes down faster than exponentially with respect to the interpolation order
p. Chebyshev nodes on [a, b], are defined as

cm =
a+ b

2
+

b− a

2
cos

(
(2m− 1)π

2p

)
, m = 1, · · · , p. (19)

With Chebyshev interpolation nodes, the approximation error over [a, b] is
bounded as

|f(x)− L(x)| ≤
2( b−a

4
)p

p!
max
ξ∈[a,b]

|f (p)(ξ)|. (20)

Therefore, if the interval [a, b] is fixed, and the derivatives of f(·) over this
interval are bounded, the approximation error falls faster-than-exponentially
(due to the factorial term) with p [7]. As a rule of thumb, choosing p in
the range 15-20 typically leads to double-precision accuracy, i.e., the “ap-
proximation” is as good as the original function for all computational pur-
poses. In our case, [a, b] is the integration interval [0, T ], which is fixed,
and the sensitivity function ~md(t) is assumed to be smooth, i.e., to have
bounded derivatives, the error bound (20) holds. This allows us to choose
a relatively small interpolation order p and evaluate ~md(t) using the ap-
proximation polynomial L(t), which for practical purposes is equivalent
to evaluating the original function ~md(t). We demonstrate the depen-
dence of the approximation error on p when we discuss the performance
of BLAST5.

4See the supplementary material §S4.
5See the supplementary material §S1.

Using the approximation L(x) instead of the original function f(x) be-
comes computationally advantageous if a) computing L(x) at each x is
expensive and b) values of f(x) are needed at many (i.e.,≫ p) points x.
The key to this efficiency is that only p evaluations of f(x) are needed to
set up the approximation L(x) in (17). Once this is done, L(x) can be eval-
uated very cheaply (O(p) using Barycentric techniques, see §2.4 below) for
any value of x.

2.4 Barycentric Lagrange Interpolation
In the form based on (18), each evaluation of L(x) requires O(p2) addi-
tions and multiplications. Another potential impediment is having to re-
compute all evaluations from scratch once a new sampling point cp+1 is
been added. An improvement over the classic Lagrange form, described
in [3], implements the computation of um(x) as

um(x) = u(x)
wm

x− cm
, (21)

where

u(x) =

p∏

k=1

(x− ck) (22)

and wm are the barycentric weights, defined as

wm =
1∏p

k=1

k 6=m

(cm − ck)
. (23)

Using (22) and (23), the interpolation polynomial can be written as

L(x) = u(x)

p∑

m=1

wm

x− cm
f(cm), (24)

which is referred to as the “first form of the barycentric interpolation for-
mula” by Rutishauser in [28]. This formula requires O(p2) flops for the
initial computation of the barycentric weights. The barycentric weights
are independent of x, therefore the cost of their computation is amortized
over a large number of function evaluations. In addition, each evaluation
requires O(p) flops for evaluating L(x), once the weights are known. As
shown in [3], incorporating a new node cp+1, also requiresO(p) additional
operations, an improvement over the direct Lagrange form approach.
To summarize, we have shown that the transient sensitivity waveform ~md(t)
can be approximated well by the interpolation polynomial L(t). Moreover,
using the barycentric form of L(t) outlined in (24) we can now evaluate
L(t) at any point, t ∈ [0, T ] at the cost of O(p) flops.

3. BLI BASED TRANSIENT ADJOINT SENSI-

TIVITY COMPUTATION
We now describe how to apply Barycentric Lagrange Interpolation to speed
up adjoint-based sensitivity computation when sensitivities are needed not
just at one timepoint, but over an entire interval. We first apply the results
of §2.2 to present an algorithm for evaluating the sensitivity vector ~md(T0)
at a specific point T0 ∈ [0, T ]. Assuming that the sensitvity function is
smooth, we then apply the results of section §2.3 and §2.4 to arrive at an
algorithm which computes the sensitivity waveform ~md(t), over the entire
interval [0, T ]. We compute ~md(t) efficiently by evaluating the sensitivity
function at a small number of interpolation nodes p, and then apply the
BLI method to evaluate the approximation polynomial L(t) at any other
point in the interval for a small computational price of O(p) operations.

3.1 Local sensitivity vector using adjoint equation
Assume, as before, that our scalar output of interest is d(t) = ~c∗~x(t). The
sensitivity vector of this output with respect to all parameters was given by
equation (13), rewritten here for convenience:

~md(T0) = −

∫ T0

0

~z
∗

~c,T0
(τ )S(τ )dτ. (25)

Note that the upper integration limit is effectively T0, since the adjoint
solution ~z~c,T0

(t) is zero for the interval t ∈ [T0, T ].
Algorithm 1, presented below utilizes (25) to compute the sensitivity vec-
tor ~md(T0):303



Algorithm 1: Local Sensitivity

Input: Circuit DAED, timepoint of interest T0, output vector ~c,
initial circuit state ~x0, final time T
Output: Sensitivity vector ~md(T0)
~p←− ~pnom;1

~xnom(t)←− Numeric solution of (2) over t ∈ [0, T0] with i.c. ~x0;2

/* See equation (8) for details */

G(t)←− d~f(~x,~p)

d~x

∣∣∣
~xnom(t),~pnom

;
3

S(t)←− d
dt

[Sq(t)] + Sf (t) =4

d
dt

[
d~q(~x,~p)

d~p

∣∣∣
~xnom(t),~pnom

]
+ d~f(~x,~p)

d~p

∣∣∣
~xnom(t),~pnom

/* See §S4 of supplementary material */

~z~c,T0
(t)←− solution of equation (16) backwards from t = T0 to5

t = 0 with “initial” condition ~z~c,T0
(T0) = ~c;

~md(T0)←− −
∫ T0

0
~z∗~c,T0

(τ )S(τ ) dτ ;6

return ~md(T0);7

3.2 Sensitivity computation using barycentric La-
grange interpolation (BLI)

In many real-life scenarios, such as for the purpose of computing delay
sensitivities, the whole transient sensitivity waveform ~md(t) over a period
of time t ∈ [0, T ] is of interest.
When using direct sensitivity computation, computing ~m(t) ∀t ∈ [0, T ],
is essentially the same effort as computing ~m(t0): a single, albeit expen-
sive, solution of (8) over [0, T ] provides M(t), from which ~md(t) can be
obtained via ~md(t) = ~c∗ M(t). Requiring no additional computation for
finding all of ~md(t) is an attractive feature of direct sensitivity computa-
tion.
However, finding all of ~md(t) using adjoint sensitivities to compute quan-
tities in in (25) requires the adjoint algorithm to be re-run for each sample
point t ∈ [0, T ] - which requires O((n+np)t) operations. Hence the total
computation needed for finding ~md(t) ∀t ∈ [0, T ] isO((n+np)T

2). This
quantity grows quadratically with T , an undesirable expense that is due to
the non-incremental nature of the adjoint transient sensitivity computation
algorithm.
In this section, we apply the BLI method outlined in §2.4 to speed up
adjoint computation of ~md(t), ∀t ∈ [0, T ]. The algorithm we present
computes ~md(t), ∀t ∈ [0, T ] in O((n+ np)T ) floating point operations.
Consider (25), which we rewrite as

~md(T0) = −

∫ T0

0

S
∗(τ ) ~z~c,T0

(τ ) dτ. (26)

We have explicitly used the notation ~z~c,T0
(t), as a reminder that the solu-

tion ~z(t) of the adjoint system, depends on the output vector ~c and the time
point T0. In particular, note that the adjoint solution ~z~c,T0

satisfies (see
section §S4 of the supplementary material for details):

~z~c,T0
(T0) = ~c, and (27)

~z~c,T0
(τ ) ≡ ~0 ∀τ > T0. (28)

If we sample the interval [0, T0] using NT0
samples {τ1, · · · , τNT0

}, and
approximate (26) by a simple discrete summation (for illustration), we ob-
tain

~md(T0) ≃ ~mdapprox(T0) , −
NT0

−1∑

i=1

S
∗(τi) ~z~c,T0

(τi) ∆i, (29)

where ∆i , τi+1 − τi and ~mdapprox(t) denotes a discrete numerical
approximation to ~md(t).
Suppose we fix a set of time-points

TT , {τ0, τ1, · · · , τNT
} (30)

for discretizing the interval [0, T ], and want to re-use TT for calculating
(29) for all t ∈ [0, T ]. Then it is convenient to re-write (29) as a summation
over TT , using (28) to define ~z~c,T0

(τ ) when τ > T0, as

~mdapprox(t) = −

NT∑

i=1

S
∗(τi) ~z~c,T0

(τi) ∆i. (31)

We would like to find ~mdapprox(t) for each t ∈ TT . Computing (31)
directly for each t ∈ TT , would require NT separate summations, each of
which hasNT terms – requiring a total computation ofO(N2

T ×(n+np)).
To compute (26) efficiently for many values of t ∈ [0, T ], we have applied
the BLI method outlined in §2.3 and §2.4. Interpolating ~mdapprox(t) we
get:

~mdapprox(t) ≃

p∑

j=1

uj(t)~mdapprox(cj), (32)

where cj are the Chebyshev nodes on [0, T ], and uj(t) are the Barycen-
tric Lagrange polynomials (see (21)). Assuming ~md(t) is smooth, i.e.,
its derivatives are bounded over [0, T ], we have the approximation error
falling faster-than-exponentially with p, as presented in section §2.3.
Algorithm 2 presented below, is used to compute the sensitivity waveform
~mdapprox(t) in the interval [0, T ]:

Algorithm 2: Sensitivity Waveform Computation

Input: Circuit DAED, output vector ~c, interpolation order p, time
discretization TT , initial circuit state at time 0 x0, final time T

Output: Sensitivity vector waveform ~mdapprox(t) ∀t ∈ [0, T ]
a←− 0;1

b←− T ;2

/* Evaluate sensitivity at Chebyshev nodes */

for m=1 to p do3

/* See equation (19) */

cm ←−
a+b
2

+ b−a
2

cos

(
(2m−1)π

2p

)
;

4

~mbasis(m)← LocalSensitivity(D, cm,~c, x0, T );5

end6

/* Interpolate sensitivity ∀t ∈ [0, T ] */

for i=1 to NT do7

~mdapprox(i) =
∑p

j=1
uj(t)~mbasis(j)8

end9

return ~mdapprox(t);10

We assume that the Barycentric Lagrange polynomials, uj(t) (21), are pre-
computed in advance and available at step 7.

3.3 Spatial and temporal complexity considerations
Consider the computation and memory requirements of Algorithm 1:

1. Step 2 requires O(nT ) in both computation and memory.

2. Step 5 also requires O(nT ) in both computation and memory.

3. Computing the ~md(T0) integral numerically in step 6 requires
O((n+np)T ) flops, since S(t) is sparse rectangular of size n×np.

Hence, the overall time required to compute adjoint sensitivity at a single
time point is O((n+ np)T ). For large np, this is far superior to the direct
sensitivity procedure, where findingM(t), a dense matrix of size n× np,
requires O(nnpT ) storage and O(nnpT ) computation.
For Algorithm 2, the computational cost breakdown is:

1. p iterations of Algorithm 1 in steps 3−6, which costO(pT (n+np)).

2. Evaluating ~mdapprox(t) at each point using the BLI polynomials,
which requires O(npp) flops. Assuming a discretized [0, T ] inter-
val with O(T ) time points, leads to total computational effort of
O(Tnpp) flops for steps 7− 9.

Overall, the total computational effort required for evaluating the entire
waveform ~md(t) over [0, T ] via (32) is O(pT (n + np) + Tnpp). If the
interval [0, T ] is fixed, p is typically a small constant, hence this computa-
tion is much faster that the quadratic complexity of brute-force evaluation
of, e.g., (31).

4. A “NONLINEAR” DELAY METRIC
Substantial efforts have been invested by the CAD research community
to predict and optimize circuit delay. As mentioned in the introduction,
previous works typically assume small-signal conditions when analyzing
delay [19, 20, 23, 25], and rely heavily on those assumptions. However,
several delay optimization works use proprietary, nonlinear delay metrics,
e.g., in the context of underlying piecewise-linear device model functions
[8, 11]. Here, we propose an Elmore-delay [10] like metric for nonlinear304



systems. We then apply the transient sensitivities we have computed using
BLAST in order to find delay sensitivities to various system parameters.
Given a Linear Time Invariant (LTI) system with impulse response hA(t)
(at some output/node A), the classic Elmore-delay metric is defined as:

Td(A) =

∫
∞

0

hA(t) · t dt. (33)

Motivated by this definition, we define a delay metric TdNL
(A) that uses

the response at A of any system, linear or nonlinear, to a step input. De-
noting this response by gA(t), we define:

TdNL
(A) =

∫
∞

0
g′A(t) · t dt∫

∞

0
g′A(t) dt

. (34)

For LTI systems, this definition reduces to the classic Elmore delay metric,
since the derivative of a step response is the impulse response which El-
more’s original metric is based upon. However, (34) also applies to nonlin-
ear systems, for which the impulse-response based Elmore delay formula
(33) cannot be used.
Computing the sensitivities of this delay using standard adjoint methods
runs is quadratic in the time interval of the simulation, as described in
§3.2. By using our BLI-based adjoint sensitivity procedure BLAST, how-
ever, the complexity is reduced to linear. Note that BLAST can be readily
applied to find sensitivities of any other delay metric which uses informa-
tion from multiple time-points.

5. RESULTS

5.1 Delay sensitivity in a digital inverter chain
We apply BLI-based transient adjoint sensitivity computation to the delay
metric in section §4 to analyze delay sensitivities in a chain of three CMOS
inverters, shown in Fig. 1. To compute delay sensitivities (in other words,

to find the vector
dTdNL

d~p
), the entire sensitivity waveform is required; we

obtain this waveform from the algorithm in section §3.2.

Vdd

Vin

CL

Vout

Vdd

CL

Vdd

CL

Figure 1: Three stage CMOS 3 inverter chain

An example of the sensitivity waveform for the inverter chain can be seen
in Fig. 2, where the direct sensitivity and the adjoint sensitivity are pre-
sented side by side.
The sensitivities of the output delay with respect to all model parameters
are presented in Table 1, where column Ij lists the sensitivities to parame-
ters in the jth stage of the 3-stage chain.

Parameter I1 I2 I3
VDD +10.67E-02 -84.31E-04 -12.09E-04
βN +31.19E-07 +12.48E-08 -11.02E-09
βP +50.03E-04 -40.31E-06 -12.33E-06
VTN

-61.90E-03 -15.91E-03 +47.31E-04
VTP

-53.42E+00 +23.20E-03 +16.02E-04
RDSN

+34.56E+01 -21.69E+01 +81.04E-01
RDSP

-99.42E+01 +21.61E+01 -45.86E+00
CL -14.56E-09 +12.38E-10 +10.02E-11

Table 1: Digital inverter chain output delay sensitivities to parameters
of the different stages

As might be expected given the fact that each nonlinear inverter has an
“amplifying” effect on parts of the input waveform, the output delay is
much more sensitive to parameters in earlier stages of the chain than to
those in later stages, i.e., the impact of the first stage inverter is much
larger on the delay, than the impact of the last stage.
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Figure 2: A. Inverter response to a step input, and the delay (vertical
line) found by the delay metric. B. Sensitivity of an inverter output to
VDD under a step input

5.2 Genetic “inverter-chain” sensitivity analysis
Over more than a decade, research in synthetic biology has focussed on
designing and implementing simple, artificial, biological networks. The
intention of this research direction is to design standard, modular build-
ing blocks in order to build larger artificial biological systems. Another
important motivation is to study the behaviour of simple, canonical bio-
circuits in order to gain insight into the dynamics of real metabolic path-
ways [2, 26]. In [16], a synthetic transcriptional cascade is described, and
its outputs manually analysed with respect to their sensitivity to design pa-
rameters. We demonstrate the applicability of BLAST by computing the
delay sensitivities of this transcriptional cascade.
Although functionally similar, the underlying implementation mechanism
and the mathematical model of the biological inverter is rather different
from its electronic counterpart: a schematic description of a single inverter
is presented in Fig. 3. In a very crude approximation, the presence of a tran-
scription factor tf1 induces the promoter ip1 and results in the production
of a protein dr1, which in turn represses the production of a fluorescent
report protein fp1 downstream by blocking its promoter rp1. To chain the
standalone inverters into a cascade, the second output is engineered to pro-
duce a repressor protein for the next stage in all but the last stage, which
produces a fluorescent protein for output readout. The input to the system
is encoded in the amount of the transcription factor tf1.

Figure 3: Schematic diagram of a biochemical inverter

Our model for the single biological inverter, based on a simplified version
of [16], consists of the following bio-chemical reactions:

R+ pRa → pRi, (35)

pRi → R + pRa, (36)

pRa → pRa +mRNA, (37)

mRNA→ mRNA+GFP, (38)

mRNA→ φ, (39)

GFP → φ. (40)

In the above, R stands for repressor, prRa for active promoter, pRi for
inactivated promoter, mRNA stands for the messenger RNA synthesized305



during transcription and GFP represents the Green Flourescent Protein,
which acts as the output of the inverter. In this reaction system, promoter
inactivation is modeled by (35) and (36), transcription is modeled by (37),
translation by (38) and the degradation of mRNA and GFP by equations
(39) and (40) respectively.
The sensitivities of the output delay to the parameters of the different stages
are shown in Table 2; sensitivity waveforms are shown in Fig. 4. Remain-
ing consistent with the digital electronics example, column Ij lists the sen-
sitivities to the parameters of the jth stage.

Parameter I1 I2 I3
kon -52.81E-03 +38.21E-04 -41.01E-04
koff +26.44E-03 -19.33E-04 +20.21E-04

ktranscription +41.23E-03 -43.16E-03 -31.29E-04
ktranslation +38.55E-03 -42.31E-03 -27.91E-04

kdegp -18.43E-03 +19.97E-03 -30.96E-05
kdegm -13.10E-04 +19.11E-04 +12.90E-06
ptot +45.04E-01 +45.95E-02 -55.11E-03

Table 2: Biological inverter chain output delay sensitivities to param-
eters of the different stages

It can be observed that in the biological case too, the sensitivity of the
delay at the output is affected more by parameters in the first stage of the
cascade. In fact, due to the large variability in the distinct biological imple-
mentations of the same basic component, and the inherent, often undesired,
inter-component coupling through the reaction medium, sensitivity analy-
sis can assist in estimating compatibility between various components of
the same bio-circuit.
This example demonstrates how BLAST is as relevant to the biological
domain as it is to electronics. Indeed, we believe that with the rising
prominence of synthetic biological design techniques, the rôle of delays in
the design of complex biochemical pathways will achieve an importance
equalling or surpassing that in electronic/digital design.
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Figure 4: A. Genetic inverter response to a step input and the delay
(vertical line) found by the delay metric. B. Sensitivity of genetic in-
verter output to parameters under a step input

5.3 Performance evaluation
To evaluate computational performance, wemeasured the run-time of BLAST,
and compared it with the direct sensitivity computation as well as the full
adjoint computation(without BLI). Sensitivities via BLAST feature aver-
age speedups factors of 29.81 and 17.24 when compared to direct and ad-
joint sensitivities, respectively. Charts and additional performance results
are provided in §S1 in the supplementary material.

6. SUMMARY AND CONCLUSIONS
In this paper, we have presented BLAST: an efficient method for comput-
ing entire waveforms of transient sensitivity with respect to parameters.
We have also proposed an Elmore-delay like metric to estimate delay in
nonlinear systems, and as an example, have successfully applied BLAST

to calculate the delay sensitivities of an inverter chain to its system pa-
rameters. We have shown that BLAST achieves an average speedup of
∼ 30 compared to direct transient sensitivities, and an average speedup
of ∼ 17 relative to traditional adjoint. We have also shown how BLAST
can be readily applied as a design tool in a synthetic biology application.
Our hope for the future is that by applying design tools such as BLAST
from the CAD community to biological applications, we can contribute to
a transformation in the field of quantitative biology, similar to the one that
reshaped the field of digital electronics in the 1970s.
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Supplementary Material

S1. PERFORMANCE RESULTS
BLAST performance data is presented in Fig. S1.1 where the sensitivity
computation runtime is plotted vs. the number of integration points T . For
comparison, we present the runtimes of the direct sensitivity and the ad-
joint sensitivity methods without applying the BLI technique (marked as
AdjointFull in the plots). The speedup factor depends on the choice of
the parameters n, np and T , and for coherence of presentation, we report
performance measurements in Table (S1.1) for a fixed integration interval
and varying n and np. From the performed experiments, BLAST obtains
an average speedup factor of 29.81 when compared to direct sensitivity
computation under the same configuration, and 17.24 speedup factor when
compared to the adjoint sensitivity method without BLI. A certain pattern
can be observed from these measurements, and was confirmed by addi-
tional experiments: as we fix the integration interval and make our system
larger (by increasing n and np), the speedup factor achieved over the direct
sensitivity method grows. At the same time, if we compare the speedup
factor to the adjoint method that uses no BLI, we see that as the size of
the system dominates the length of the integration interval T , the speedup
becomes smaller.
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Figure S1.1: Sensitivity map computation time: Direct,Adjoint, Ad-
joint with BLI

n np T Direct AdjointBLI AdjointFull

1 8 1000 2237.76 89.57 2195.07
2 16 1000 4127.92 145.82 2739.87
4 32 1000 8456.16 268.83 4107.86
8 64 1000 17865.36 517.92 6882.84

Table S1.1: Performance measurements (runtime in seconds)

To use BLAST, one has to choose a value of p, the interpolation order pa-
rameter. As usual, this choice represents a trade-off between accuracy and
computation time. To test whether the choice of p can become the accuracy
bottleneck of the system, we have measured the relative error as a function
of the interpolation order p. We present our accuracy measurements for
both equispaced and Chebyshev nodes in Fig. S1.2. It can be seen, that
for p = 20 with Chebyshev nodes, we effectively reach double precision,
which means that for a large system (large n and np) the factor introduced
by p in the time complexity, becomes insignificant, and BLAST effectively
performs at linear time. This means that the optimal choice of p will have
no effect on the accuracy of the system, as the accuracy bottleneck will be
somewhere else.
For completeness, we present the error in the sensitivity computed by
BLAST in Fig. S1.3 and compare it to the accuracy of the sensitivity map
produced by the direct method.

S2. ADJOINTOPERATORFORLINEARDIFFER-

ENTIAL EQUATIONS
Given an operator L taking its input from some domain D into the output
range R, the adjoint L† of the operator L can be intuited as an inner-
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product preserving operator. For a fixed point y in the range, we operate
L on any u in the domain D, and take an inner product between the image
of u, i.e. L(u), and the fixed point y :see Fig. S2.1 for illustration. The

adjoint operator, denoted L†, operating on y in the range, will return z in
the domain D, whose inner product with the original u is the same, as the
inner product of L(u) and the fixed point y. If for any choice of the fixed
point y, we can find such a z, we say that the mapping y 7→ z defines the
adjoint operator L†.

Figure S2.1: Schematic representation of the adjoint operator.

More formally, L† would be defined as the adjoint operator of L, if ∀u ∈
D,∀y ∈ R, we have:

〈L{u}, y〉R = 〈u,L†{y}〉D. (41)

Equation (12) which is rewritten here for convenience as

−C∗(t)
d

dt
~z(t) +G

∗(t)~z(t) = ~y(t), (42)

defines a mapping ~y 7→ ~z, i.e. between ~y(t) ∈ R and ~z(t) ∈ D. We
will show that this mapping is the adjoint of the mapping L, defined by
equation (10), rewritten here for convenience as

d

dt
C(t) ~x(t) +G(t) ~x(t) = ~u(t). (43)

To show that ~z = L†{~y}, we need to show, that following the definition in307



(41), the inner product is preserved, i.e.,

∀~u ∈ D,~y ∈ R s.t. L{~u} = ~x and L†{~y} = ~z,

〈~x(t), ~y(t)〉
R

= 〈~u(t), ~z(t)〉
D
.

(44)

We use the standard definition of inner product for vector functions:

〈~x(t), ~y(t)〉 =

∫ B

A

w(τ ) [~y∗(τ ) ~x(τ )] dτ, (45)

where w(t) is some appropriate scalar weighting function. We assume
w(t) ≡ 1 in this work.
We note that

〈~x(t), ~y(t)〉
R

=

〈
~x(t),−C∗(t)

d

dt
~z(t) +G

∗(t) ~z(t)

〉

R

=

〈
~x(t),−C∗(t)

d

dt
~z(t)

〉

R

+ 〈~x(t),G∗(t) ~z(t)〉
R
,

(46)

and also that

〈~u(t), ~z(t)〉
D

=

〈
d

dt
[C(t) ~x(t)] +G(t) ~x(t), ~z(t)

〉

D

=

〈
d

dt
[C(t) ~x(t)] , ~z(t)

〉

D

+ 〈G(t) ~x(t), ~z(t)〉
D
.

(47)

Our purpose is to show that the quantities (46) and (47) are equal. From
inner product properties, it is obvious that the second terms are equal. We
will show that the first terms are also equal, i.e., that

〈
~x(t),−C∗(t)

d

dt
~z(t)

〉

R

=

〈
d

dt
[C(t) ~x(t)] , ~z(t)

〉

D

.

To do this, we use (45) to expand out the inner products and get
〈
~x(t),−C∗(t)

d

dt
~z(t)

〉

R

=

∫ B

A

−
[ d
dt

~z
∗(t)

]
C(t) ~x(t) dt.

Since integration by parts can be stated as

∫ B

A

dr

dt
s(t) dt = [r(t) s(t)]B

A
−

∫ B

A

r(t)
ds

dt
dt. (48)

we set s(t) ≡ −C(t)~x(t) and ~r(t) ≡ ~z∗(t), to arrive at:
〈
~x(t),−C∗(t)

d

dt
~z(t)

〉

R

=

∫ B

A

−
[ d
dt

~z
∗(t)

]
C(t) ~x(t) dt

=

∫ B

A

dr(t)

dt
s(t) dt

= [r(t) s(t)]BA −

∫ B

A

r(t)
ds

dt
dt

= [−~z∗(t)C(t)~x(t)]
B

A +

∫ B

A

~z
∗(t)

d

dt
[C(t)~x(t)] dt

= [−~z∗(t)C(t)~x(t)]
B

A +

〈
d

dt
[C(t)~x(t)] , ~z(t)

〉

D

.

To complete our proof, we are left with the task of making the term

[−~z∗(t)C(t)~x(t)]B
A
, zero. This term, which we will call the “boundary

effect” term, leads to challenges in many situations having to do with ad-
joints. One way to deal with it, is to make A → −∞, B → ∞, and
restrict the functions ~x(t), ~z(t), to be zero at ±∞. This is a viable prac-
tical solution to this problem for stable systems of differential equations,
since we can usually choose inputs that go to zero far away from the re-
gions of time we are interested in. If we cannot (i.e., the system exhibits
non-zero asymptotic behaviour), then other technical tricks – like adding
weight functions to the inner-product definition, and restricting the domain
of definition of the adjoint operator – can be tried to zero out boundary ef-
fect terms. In applications, one should be careful to check that such bound-
ary terms are indeed zero, or if non-zero, that they are properly accounted
for in the overall analysis.
In our situation, however, getting around this is particularly simple. Since
both ~x(t) and ~z(t) are solutions of differential equations, we do need to
specify initial conditions. We choose the initial conditions to be ~x(A) = 0

and ~z(B) = 0. This choice ensures that [−~z∗(t)C(t)~x(t)]B
A

= 0. As we
will see later, the adjoint differential equation (42) will need to be solved
backwards, from B toA, so an “initial” condition on ~z(B) is a natural one
for the adjoint.

S3. LOCAL SENSITIVITYUSINGTHEADJOINT

OPERATOR
In section §2.2 we have used the linearized system (11), rewritten here for
convenience as

d

dt
C(t)∆~x(t) +G(t)∆~x(t) = ~u(t) = −S(t)∆~p, (49)

and its adjoint system, rewritten here for convenience as

−C∗(t)
d

dt
~z(t) +G

∗(t)~z(t) = ~y(t), (50)

to arrive at the sensitivity vector of a specific output d(t) at a given time
point t = T0.
While most technicalities were omitted from the main article, we now pro-
vide the detailed derivation, arriving at equation (57), which lays the foun-
dation for Algorithm 1 (Local Sensitivity Algorithm).
The main feature of the adjoint operator relevant for our purpose, is the
preservation of inner product. We will utilize this property to reduce the
computational burden of sensitivity analysis. In this work, we use the stan-
dard definition of inner product for vector functions (45) rewritten here for
convenience:

〈~x(t), ~y(t)〉 =

∫ B

A

w(τ ) [~y∗(τ ) ~x(τ )]dτ. (51)

In (51), w(t) is some scalar weighting function, which we define to be
w(t) ≡ 1.
As mentioned in section §S2 of supplementary material, inner product
preservation simply means, that for a linear operator L : ~u(t) 7→ ∆~x(t),
and its adjoint operator L† : ~y(t) 7→ ~z(t) the following holds:

∀~u ∈ D, ~y ∈ R s.t. L{~u} = ∆~x and L†{~y} = ~z,

〈∆~x, ~y〉R =〈L{~u}, ~y〉R = 〈~u,L†{~y}〉D = 〈~u, ~z〉D.
(52)

To demonstrate the utility of (52) let us assume that we are interested in a
single output x1(t). Let us further assume that we are interested in sensi-
tivity of x1(t) at a single time point T0. Denoting an elementary vector as
~e1, and applying the basic property of the inner product we get:

∆x1(T0) = 〈∆~x(t), ~e1δ(t− T0)〉 , (53)

which now allows us to apply (52) and arrive at:

〈∆~x(t), ~e1δ(t− T0)〉 =

〈L{~u(t)}, ~e1δ(t− T0)〉
R

=

〈
~u(t),L†{~e1δ(t− T0)}︸ ︷︷ ︸

~zT0
(t)

〉

D

. (54)

Note that the L represents the linear operator defined by (49), and ~zT0
(t)

is the solution of the differential equation defined by the adjoint operator
L† : ~y(t) 7→ ~z(t) for an input ~y(t) = ~e1δ(t− T0). From (49) we observe
that the input ~u(t) to our forward equation is ~u(t) = −S(t)∆~p, allowing
us to rewrite (54), and using (53) arrive at:

∆x1(T0) =

〈
~u(t),L†{~e1δ(t− T0)}︸ ︷︷ ︸

~zT0
(t)

〉

D

= 〈−S(t)∆~p, ~zT0
(t)〉

D
.

(55)
Finally we can apply the inner product definition from (51) and get:

∆x1(T0) = 〈−S(t)∆~p, ~zT0
(t)〉

D
= −(

∫ B

A

~z
∗

T0
(τ )S(τ )dτ )∆~p. (56)

Performing a "division" operation similar to the one in (7), we arrive at
~m1(T0), defined as the sensitivity vector of x1(t) with respect to parame-
ters ~p, evaluated at time t = T0:

~m1(T0) =
∆x1(T0)

∆~p
= −

∫ B

A

~z
∗

T0
(τ )S(τ )dτ. (57)308



To compute ~m1(T0) we first need to obtain ~zT0
(t) by solving the adjoint

system for an input ~u(t) = ~e1δ(t− T0), and then compute the integral in
(57). Note that the matrices S(t) can be readily computed from (8).
A subtle, yet important point concerning the integration limits in the def-
inition of inner product(A and B), is in order. As outlined in section
§S2 of the supplementary material, we need to zero out the boundary

effect term [−~z∗(t)C(t)∆~x(t)]B
A
. Choosing A = 0, will set the term

[−~z∗(t)C(t)∆~x(t)]
A
to zero, since the initial condition of (49), given at

t = 0, is ~0.
As for B, we know from the definition of the inner product it follows that
we must have B ≥ T0. Moreover, for reasons elucidated in section §S4 of
the supplementary material, we choose B > T0. To zero out the term

[−~z∗(t)C(t)∆~x(t)]B , we must impose the the “initial” condition ~z(B) =
~0 when solving the adjoint DAE (50); to obtain ~z(t) over the interval
[A,B] (needed for computing (57)), the adjoint DAE must be solved back-
wards from B to A. In this context, note that if (49) is a stable system (as
will typically be the case in applications), then (50) is an unstable system
— in other words, its solution will blow up exponentially as t increases.
Hence, solving it backwards is necessary, from a numerical standpoint, to
avoid uncontrolled error blowup; since (12) is unstable going forward in
time, it is stable going backward in time, hence standard numerical inte-
gration methods can be applied directly.

S4. ANALYSIS OF ADJOINT ODEWITH

δ-FUNCTION INPUT
In section §2.2 of our work, we show that a key step in the computation of
transient adjoint sensitivities, is the solution of the adjoint equation (14),
rewritten here for convenience:

−C∗(t)
d

dt
~z(t) +G

∗(t) ~z(t) = ~c δ(t− T0). (58)

As mentioned before, we need to solve (58) backwards from t = B to
t = 0, with “initial” condition ~z(B) = ~0, and B > T0.
However, this solution cannot immediately be obtained using standard nu-
merical integration methods, because the input is a δ-function. Numerical
methods are not well suited for δ-function inputs, which involve an infi-
nite value at a single time-point, while being identically zero elsewhere.
Therefore, further analysis is needed to re-phrase (58) in a form suitable
for numerical integration.
To simplify this analysis, we now restrict ourselves to ODEs: i.e., ~q(~x) ≡
~x in (2), leading (w.l.o.g. for invertible C) to C(t) ≡ In×n. For the ODE
case, (58) becomes

−
d

dt
~z(t) +G

∗(t) ~z(t) = ~c δ(t− T0), (59)

to be solved backwards from t = B to t = 0, with “initial” condition given
as ~z(B) = ~0.
The δ-function form of the input (59), together with its zero initial condi-
tion at t = B, has the following implications as we integrate backwards
from t = B to t = 0 (note that B > T0, by assumption above):

1. Over the interval [T+

0
, B], the solution of (59), ~z(t), is identically

the zero vector. This is because (59), a linear ODE, has an identically
zero input over this interval, as well as an initial condition of zero, at
t = B.

2. Over the interval [T−

0
, T+

0
], the δ-function in the input is “active”.

Integrating (59) over this interval, we obtain

∫ T
+

0

T
−

0

[
−

d

dt
~z(t) +G

∗(t) ~z(t)

]
dt =

∫ T
+

0

T
−

0

~c δ(t− T0) dt

⇒

∫ T
+

0

T
−

0

[
−

d

dt
~z(t) +G

∗(t) ~z(t)

]
dt = ~c

⇒− [~z(t)]
T

+

0

T
−

0

+

∫ T
+

0

T
−

0

G
∗(t) ~z(t) dt = ~c

⇒~z(T−

0 )− ~z(T+

0 ) +

∫ T
+

0

T
−

0

G
∗(t) ~z(t) dt = ~c

⇒~z(T−

0 ) = ~z(T+

0 )−

∫ T
+

0

T
−

0

G
∗(t) ~z(t) dt+ ~c.

(60)

Note that

• ~z(T+

0
) ≡ ~0 (we just established this in 1, above), and

•
∫ T

+

0

T
−

0

G∗(t) ~z(t) dt ≡ ~0 (we are integrating finite quantities over

an infinitesimally small interval).

Hence (60) becomes

~z(T−

0 ) = ~c. (61)

3. Over the interval [0, T−

0
], the input to (59) is again identically zero

since the δ-function is not active. However, the “initial” condition
over this interval is given by (61), i.e., ~z(T−

0
) = ~c.

From these observations, we see that finding the solution of (59) over the
interval [0, T−

0
], is equivalent to solving the homogeneous part of (59) (i.e.,

with zero input), i.e.,

−
d

dt
~z(t) +G

∗(t) ~z(t) = ~0, (62)

with initial condition ~z(T−

0
) = ~0, backwards from t = T−

0
to t = 0. Since

T−

0
is only infinitesimally separated from T , we can replace T−

0
with T ,

since no infinite values or δ-functions arise in (62).

S5. ELMORE DELAY SENSITIVITY
For a system with step response gA(t) at a node A, we have proposed an
Elmore-delay like metric in section §4 of our work. The metric TdNL

(A)
was defined as

TdNL
(A) =

∫
∞

0
g′A(t) · t dt∫

∞

0
g′A(t) dt

. (63)

Assuming that we operate in a finite integration interval [0, T ], we can
rewrite and simplify (63) as

TdNL
(A) =

∫ T

0
g′A(t) · t dt∫ T

0
g′A(t) dt

=

∫ T

0
g′A(t) · t dt

gA(T )− gA(0)
. (64)

We can now write the expression for the delay sensitivity vector:

d

d~p
TdNL

(A) =

d
d~p

( ∫ T

0
g′A(t) · t dt

)
·
[
gA(T )− gA(0)

]

(
d
d~p

[
gA(T )− gA(0)

])2

−

( ∫ T

0
g′A(t) · t dt

)
· d
d~p

[
gA(T )− gA(0)

]

(
d
d~p

[
gA(T )− gA(0)

])2

=

( ∫ T

0

dg′A
d~p

(t) · t dt
)
·
[
gA(T )− gA(0)

]

D2

−

( ∫ T

0
g′A(t) · t dt

)
· d
d~p

[
gA(T )− gA(0)

]

D2
,

(65)

where D2 denotes the denominator for notational simplicity.309



For the purpose of computing (65) numerically, assume we are using the
set of time samples

TT , {τ0, τ1, · · · , τNT
}, (66)

spanning the interval [0, T ]. Approximating the integral by finite summa-
tion, and the temportal derivatives by finite backward differences, we are
ready to write the discrete approximation expression for the delay sensi-
tivity vector, but first another notational simplification. Let us assign the
aliases α and β, to the first and second terms, in (65), respectively, and
rewrite (65) as:

d

d~p
TdNL

(A) =
α− β

D2
. (67)

Expanding the different terms we arrive at:

α =

[ NT∑

i=1

(
dgA

d~p
(τi)−

dgA

d~p
(τi−1)

)
· τ̄i ·∆i

]
·

(
gA(τNT

)− gA(τ0)

)
,

β =

(
dgA

d~p
(τNT

)−
dgA

d~p
(τ0)

)
·

[ NT∑

i=1

(
gA(τi)− gA(τi−1)

)
· τ̄i ·∆i

]
,

D
2 =

(
dgA

d~p
(τNT

)−
dgA

d~p
(τ0)

)
2

,

(68)

where ∆i , τi+1 − τi, and τ̄i , (τi+τi−1)

2
. Note that dgA

d~p
(τi) is exactly

the transient sensitivity vector, we have computed using BLAST.
To summarize, in this section we have shown a possible application of

BLAST, in order to compute the delay sensitivity vector
dTdNL

d~p
(A). While

we have utilized a particular, Elmore-delay like metric, a similar technique
can be used to leverage BLAST in any delay metric, which uses multiple
timepoints on the waveform to compute the delay.
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